Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109652, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38650988

RESUMO

Dysregulation of the central amygdala is thought to underlie aberrant choice in alcohol use disorder, but the role of central amygdala neural activity during reward choice and consumption is unclear. We recorded central amygdala neurons in male rats as they consumed alcohol or sucrose. We observed activity changes at the time of reward approach, as well as lick-entrained activity during ongoing consumption of both rewards. In choice scenarios where rats could drink sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala optogenetic stimulation, rats drank more of stimulation-paired options when the two bottles contained identical options. Given a choice among different options, central amygdala stimulation usually enhanced consumption of stimulation-paired rewards. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance alcohol intake while sucrose was available. These findings indicate that the central amygdala contributes to refining motivated pursuit toward the preferred available option.

2.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559136

RESUMO

Cues paired with alcohol can be potent drivers of craving, alcohol-seeking, consumption, and relapse. While the ventral pallidum is implicated in appetitive and consummatory responses across several reward classes and types of behaviors, its role in behavioral responses to Pavlovian alcohol cues has not previously been established. Here, we tested the impact of optogenetic inhibition of ventral pallidum on Pavlovian-conditioned alcohol-seeking in male Long Evans rats. Rats underwent Pavlovian conditioning with an auditory cue predicting alcohol delivery to a reward port and a control cue predicting no alcohol delivery, until they consistently entered the reward port more during the alcohol cue than the control cue. We then tested the within-session effects of optogenetic inhibition during 50% of cue presentations. We found that optogenetic inhibition of ventral pallidum during the alcohol cue reduced port entry likelihood and time spent in the port, and increased port entry latency. Overall, these results suggest that normal ventral pallidum activity is necessary for Pavlovian alcohol-seeking.

3.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585868

RESUMO

Lack of cognitive flexibility is a hallmark of substance use disorders and has been associated with drug-induced synaptic plasticity in the dorsomedial striatum (DMS). Yet the possible impact of altered plasticity on real-time striatal neural dynamics during decision-making is unclear. Here, we identified persistent impairments induced by chronic ethanol (EtOH) exposure on cognitive flexibility and striatal decision signals. After a substantial withdrawal period from prior EtOH vapor exposure, male, but not female, rats exhibited reduced adaptability and exploratory behavior during a dynamic decision-making task. Reinforcement learning models showed that prior EtOH exposure enhanced learning from rewards over omissions. Notably, neural signals in the DMS related to the decision outcome were enhanced, while those related to choice and choice-outcome conjunction were reduced, in EtOH-treated rats compared to the controls. These findings highlight the profound impact of chronic EtOH exposure on adaptive decision-making, pinpointing specific changes in striatal representations of actions and outcomes as underlying mechanisms for cognitive deficits.

4.
Transl Psychiatry ; 14(1): 86, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336862

RESUMO

Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.


Assuntos
Agonistas de Dopamina , Comportamento Impulsivo , Ratos , Masculino , Animais , Pramipexol/farmacologia , Comportamento Impulsivo/fisiologia , Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , RNA Mensageiro
5.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260546

RESUMO

Basolateral amygdala (BLA) neuronal responses to conditioned stimuli are closely linked to the expression of conditioned behavior. An area of increasing interest is how the dynamics of BLA neurons relate to evolving behavior. Here, we recorded the activity of individual BLA neurons across the acquisition and extinction of conditioned reward seeking and employed population-level analyses to assess ongoing neural dynamics. We found that, with training, sustained cue-evoked activity emerged that discriminated between the CS+ and CS- and correlated with conditioned responding. This sustained population activity continued until reward receipt and rapidly extinguished along with conditioned behavior during extinction. To assess the contribution of orbitofrontal cortex (OFC), a major reciprocal partner to BLA, to this component of BLA neural activity, we inactivated OFC while recording in BLA and found blunted sustained cue-evoked activity in BLA that accompanied reduced reward seeking. Optogenetic disruption of BLA activity and OFC terminals in BLA also reduced reward seeking. Our data suggest that sustained cue-driven activity in BLA, which in part depends on OFC input, underlies conditioned reward-seeking states.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37858736

RESUMO

The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.


Assuntos
Dopamina , Síndrome de Wolfram , Animais , Feminino , Masculino , Aprendizagem da Esquiva , Neurônios/fisiologia , Receptores de Dopamina D1 , Receptores de Dopamina D2/genética
7.
Eur J Neurosci ; 59(2): 220-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093522

RESUMO

Separable striatal circuits have unique functions in Pavlovian and instrumental behaviors but how these roles relate to performance of sequences of actions with and without associated cues are less clear. Here, we tested whether dopamine transmission and neural activity more generally in three striatal subdomains are necessary for performance of an action chain leading to reward delivery. Male and female Long-Evans rats were trained to press a series of three spatially distinct levers to receive reward. We assessed the contribution of neural activity or dopamine transmission within each striatal subdomain when progression through the action sequence was explicitly cued and in the absence of cues. Behavior in both task variations was substantially impacted following microinfusion of the dopamine antagonist, flupenthixol, into nucleus accumbens core (NAc) or dorsomedial striatum (DMS), with impairments in sequence timing and numbers of rewards earned after NAc flupenthixol. In contrast, after pharmacological inactivation to suppress overall activity, there was minimal impact on total rewards earned. Instead, inactivation of both NAc and DMS impaired sequence timing and led to sequence errors in the uncued, but not cued task. There was no impact of dopamine antagonism or reversible inactivation of dorsolateral striatum on either cued or uncued action sequence completion. These results highlight an essential contribution of NAc and DMS dopamine systems in motivational and performance aspects of chains of actions, whether cued or internally generated, as well as the impact of intact NAc and DMS function for correct sequence performance.


Assuntos
Dopamina , Núcleo Accumbens , Feminino , Ratos , Animais , Masculino , Ratos Long-Evans , Flupentixol/farmacologia , Motivação , Sinais (Psicologia) , Antagonistas de Dopamina/farmacologia , Recompensa , Condicionamento Operante
8.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961363

RESUMO

Adaptive behavior in a dynamic environment often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical test to theories of dopamine's function in learning, motivation, and motor control. Yet how dopamine neurons are involved in the revaluation of cues when the world changes to alter our behavior remains unclear. Here we make use of pharmacology, in vivo electrophysiology, fiber photometry, and optogenetics to resolve the contributions of the mesolimbic dopamine system to the dynamic reorganization of reward-seeking. Male and female rats were trained to discriminate when a conditioned stimulus would be followed by sucrose reward by exploiting the prior, non-overlapping presentation of a separate discrete cue - an occasion setter. Only when the occasion setter's presentation preceded the conditioned stimulus did the conditioned stimulus predict sucrose delivery. As a result, in this task we were able to dissociate the average value of the conditioned stimulus from its immediate expected value on a trial-to-trial basis. Both the activity of ventral tegmental area dopamine neurons and dopamine signaling in the nucleus accumbens were essential for rats to successfully update behavioral responding in response to the occasion setter. Moreover, dopamine release in the nucleus accumbens following the conditioned stimulus only occurred when the occasion setter indicated it would predict reward. Downstream of dopamine release, we found that single neurons in the nucleus accumbens dynamically tracked the value of the conditioned stimulus. Together these results reveal a novel mechanism within the mesolimbic dopamine system for the rapid revaluation of motivation.

9.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553242

RESUMO

Extrasynaptic GABAA receptors (GABAARs) composed of α4, ß, and δ subunits mediate GABAergic tonic inhibition and are potential molecular targets in the modulation of behavioral responses to natural and drug rewards. These GABAARs are highly expressed within the nucleus accumbens (NAc), where they influence the excitability of the medium spiny neurons. Here, we explore their role in modulating behavioral responses to food-conditioned cues and the behavior-potentiating effects of cocaine. α4-Subunit constitutive knock-out mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the α4ßδ-GABAAR-preferring agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; Gaboxadol) into the NAc had no effect on responding when given alone but reduced cocaine potentiation of responding for conditioned reinforcers in wild-type, but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2, but not D1, receptor-expressing neurons (DRD2 and DRD1 neurons), mimicked the phenotype of the constitutive knockout, potentiating CRf responding, and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR-mediated inhibition of DRD2 neurons reduces instrumental responding for a conditioned reinforcer and its potentiation by cocaine and emphasize the importance of GABAergic signaling within the NAc in mediating the effects of cocaine.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Núcleo Accumbens , Receptores de GABA-A , Neurônios , Camundongos Knockout , Ácido gama-Aminobutírico/farmacologia , Receptores de Dopamina D2
10.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425773

RESUMO

The ability to evaluate and select a preferred option among a variety of available offers is an essential aspect of goal-directed behavior. Dysregulation of this valuation process is characteristic of alcohol use disorder, with the central amygdala being implicated in persistent alcohol pursuit. However, the mechanism by which the central amygdala encodes and promotes the motivation to seek and consume alcohol remains unclear. We recorded single-unit activity in male Long-Evans rats as they consumed 10% ethanol or 14.2% sucrose. We observed significant activity at the time of approach to alcohol or sucrose, as well as lick-entrained activity during the ongoing consumption of both alcohol and sucrose. We then evaluated the ability of central amygdala optogenetic manipulation time-locked to consumption to alter ongoing intake of alcohol or sucrose, a preferred non-drug reward. In closed two-choice scenarios where rats could drink only sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala stimulation, rats drank more of stimulation-paired options. Microstructural analysis of licking patterns suggests these effects were mediated by changes in motivation, not palatability. Given a choice among different options, central amygdala stimulation enhanced consumption if the stimulation was associated with the preferred reward while closed-loop inhibition only decreased consumption if the options were equally valued. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance overall alcohol intake while sucrose was available. Collectively, these findings indicate that the central amygdala processes the motivational value of available offers to promote pursuit of the most preferred available option.

11.
J Neurosci ; 43(21): 3895-3908, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37185097

RESUMO

Reward seeking requires the coordination of motor programs to achieve goals. Midbrain dopamine neurons are critical for reinforcement, and their activation is sufficient for learning about cues, actions, and outcomes. Here we examine in detail the mechanisms underlying the ability of ventral tegmental area (VTA) and substantia nigra (SNc) dopamine neurons to support instrumental learning. By exploiting numerous behavioral tasks in combination with time-limited optogenetic manipulations in male and female rats, we reveal that VTA and SNc dopamine neurons generate reinforcement through separable psychological processes. VTA dopamine neurons imbue actions and their associated cues with motivational value that allows flexible and persistent pursuit, whereas SNc dopamine neurons support time-limited, precise, action-specific learning that is nonscalable and inflexible. This architecture is reminiscent of actor-critic reinforcement learning models with VTA and SNc instructing the critic and actor, respectively. Our findings indicate that heterogeneous dopamine systems support unique forms of instrumental learning that ultimately result in disparate reward-seeking strategies.SIGNIFICANCE STATEMENT Dopamine neurons in the midbrain are essential for learning, motivation, and movement. Here we describe in detail the ability of VTA and SNc dopamine neurons to generate instrumental reinforcement, a process where an agent learns about actions they can emit to earn reward. While rats will avidly work and learn to respond for activation of VTA and SNc dopamine neurons, we find that only VTA dopamine neurons imbue actions and their associated cues with motivational value that spur continued pursuit of reward. Our data support a hypothesis that VTA and SNc dopamine neurons engage distinct psychological processes that have consequences for our understanding of these neurons in health and disease.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Ratos , Masculino , Feminino , Animais , Neurônios Dopaminérgicos/fisiologia , Área Tegmentar Ventral/fisiologia , Reforço Psicológico , Substância Negra/fisiologia , Recompensa
13.
iScience ; 26(1): 105818, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36636348

RESUMO

We previously reported the rapid development of habitual behavior in a discrete-trials instrumental task in which lever insertion and retraction act as reward-predictive cues delineating sequence execution. Here we asked whether lever cues or performance variables reflective of skill and automaticity might account for habitual behavior in male rats. Behavior in the discrete-trials habit-promoting task was compared with two task variants lacking the sequence-delineating cues of lever extension and retraction. We find that behavior is under goal-directed control in absence of sequence-delineating cues but not in their presence, and that skilled performance does not predict goal-directed vs. habitual behavior. Neural activity recordings revealed an engagement of dorsolateral striatum and a disengagement of dorsomedial striatum during the sequence execution of the habit-promoting task, specifically. Together, these results indicate that sequence delineation cues promote habit and differential engagement of striatal subregions during instrumental responding, a pattern that may reflect cue-elicited behavioral chunking.

14.
Psychopharmacology (Berl) ; 240(3): 623-635, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36056949

RESUMO

Reward-seeking in the world is driven by cues that can have ambiguous predictive and motivational value. To produce adaptive, flexible reward-seeking, it is necessary to exploit occasion setters, other distinct features in the environment, to resolve the ambiguity of Pavlovian reward-paired cues. Despite this, very little research has investigated the neurobiological underpinnings of occasion setting, and as a result little is known about which brain regions are critical for occasion setting. To address this, we exploited a recently developed task that was amenable to neurobiological inquiry where a conditioned stimulus is only predictive of reward delivery if preceded in time by the non-overlapping presentation of a separate cue-an occasion setter. This task required male rats to maintain and link cue-triggered expectations across time to produce adaptive reward-seeking. We interrogated the contributions of the basolateral amygdala and orbitofrontal cortex to occasion setting as these regions are thought to be critical for the computation and exploitation of state value, respectively. Reversible inactivation of either structure prior to the occasion-setting task resulted in a profound inability of rats to use the occasion setter to guide reward-seeking. In contrast, inactivation of the dorsal hippocampus, a region fundamental for context-specific responding was without effect nor did inactivation of the basolateral amygdala or orbitofrontal cortex in a standard Pavlovian conditioning preparation affect conditioned responding. We conclude that neural activity within the orbitofrontal cortex and basolateral amygdala circuit is necessary to update and resolve ambiguity in the environment to promote cue-driven reward-seeking.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Masculino , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Recompensa , Córtex Pré-Frontal/fisiologia , Condicionamento Operante , Sinais (Psicologia) , Hipocampo/fisiologia
15.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34725103

RESUMO

For proper execution of goal-directed behaviors, individuals require both a general representation of the goal and an ability to monitor their own progress toward that goal. Here, we examine how dorsomedial striatum (DMS), a region pivotal for forming associations among stimuli, actions, and outcomes, encodes the execution of goal-directed action sequences that require self-monitoring of behavior. We trained rats to complete a sequence of at least five consecutive lever presses (without visiting the reward port) to obtain a reward and recorded the activity of individual cells in DMS while rats performed the task. We found that the pattern of DMS activity gradually changed during the execution of the sequence, permitting accurate decoding of sequence progress from neural activity at a population level. Moreover, this sequence-related activity was blunted on trials where rats did not complete a sufficient number of presses. Overall, these data suggest a link between DMS activity and the execution of behavioral sequences that require monitoring of ongoing behavior.


Assuntos
Corpo Estriado , Recompensa , Animais , Humanos , Motivação , Neostriado , Ratos
16.
Learn Mem ; 28(12): 435-439, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34782401

RESUMO

It is thought that goal-directed control of actions weakens or becomes masked by habits over time. We tested the opposing hypothesis that goal-directed control becomes stronger over time, and that this growth is modulated by the overall action-outcome contiguity. Despite group differences in action-outcome contiguity early in training, rats trained under random and fixed ratio schedules showed equivalent goal-directed control of lever pressing that appeared to grow over time. We confirmed that goal-directed control was maintained after extended training under another type of ratio schedule-continuous reinforcement-using specific satiety and taste aversion devaluation methods. These results add to the growing literature showing that extensive training does not reliably weaken goal-directed control and that it may strengthen it, or at least maintain it.


Assuntos
Condicionamento Operante , Objetivos , Animais , Comportamento Animal , Motivação , Ratos , Reforço Psicológico
17.
Annu Rev Neurosci ; 44: 173-195, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33667115

RESUMO

Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20-30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs-an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Comportamento de Procura de Droga , Humanos , Reforço Psicológico , Recompensa
18.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148649

RESUMO

A key function of the nervous system is producing adaptive behavior across changing conditions, like physiological state. Although states like thirst and hunger are known to impact decision-making, the neurobiology of this phenomenon has been studied minimally. Here, we tracked evolving preference for sucrose and water as rats proceeded from a thirsty to sated state. As rats shifted from water choices to sucrose choices across the session, the activity of a majority of neurons in the ventral pallidum, a region crucial for reward-related behaviors, closely matched the evolving behavioral preference. The timing of this signal followed the pattern of a reward prediction error, occurring at the cue or the reward depending on when reward identity was revealed. Additionally, optogenetic stimulation of ventral pallidum neurons at the time of reward was able to reverse behavioral preference. Our results suggest that ventral pallidum neurons guide reward-related decisions across changing physiological states.

19.
Nat Neurosci ; 23(10): 1267-1276, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778791

RESUMO

The nervous system is hypothesized to compute reward prediction errors (RPEs) to promote adaptive behavior. Correlates of RPEs have been observed in the midbrain dopamine system, but the extent to which RPE signals exist in other reward-processing regions is less well understood. In the present study, we quantified outcome history-based RPE signals in the ventral pallidum (VP), a basal ganglia region functionally linked to reward-seeking behavior. We trained rats to respond to reward-predicting cues, and we fit computational models to predict the firing rates of individual neurons at the time of reward delivery. We found that a subset of VP neurons encoded RPEs and did so more robustly than the nucleus accumbens, an input to the VP. VP RPEs predicted changes in task engagement, and optogenetic manipulation of the VP during reward delivery bidirectionally altered rats' subsequent reward-seeking behavior. Our data suggest a pivotal role for the VP in computing teaching signals that influence adaptive reward seeking.


Assuntos
Prosencéfalo Basal/fisiologia , Motivação/fisiologia , Neurônios/fisiologia , Recompensa , Animais , Sinais (Psicologia) , Preferências Alimentares/fisiologia , Masculino , Modelos Neurológicos , Núcleo Accumbens/fisiologia , Optogenética , Ratos Long-Evans
20.
Biol Psychiatry ; 88(10): 746-757, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622465

RESUMO

BACKGROUND: Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) play critical roles in processing information related to reward. However, the contribution of ChINs to the emergence of addiction-like behaviors and its underlying molecular mechanisms remain elusive. METHODS: We employed cocaine self-administration to identify two mouse subpopulations: susceptible and resilient to cocaine seeking. We compared the subpopulations for physiological responses with single-unit recording of NAc ChINs, and for gene expression levels with RNA sequencing of ChINs sorted using fluorescence-activated cell sorting. To provide evidence for a causal relationship, we manipulated the expression level of dopamine D2 receptor (DRD2) in ChINs in a cell type-specific manner. Using optogenetic activation combined with a double whole-cell recording, the effect of ChIN-specific DRD2 manipulation on each synaptic input was assessed in NAc medium spiny neurons in a pathway-specific manner. RESULTS: Susceptible mice showed higher levels of nosepoke responses under a progressive ratio schedule, and impairment in extinction and punishment procedures. DRD2 was highly abundant in the NAc ChINs of susceptible mice. Elevated abundance of DRD2 in NAc ChINs was sufficient and necessary to express high cocaine motivation, putatively through reduction of ChIN activity during cocaine exposure. DRD2 overexpression in ChINs mimicked cocaine-induced effects on the dendritic spine density and the ratios of excitatory inputs between two distinct medium spiny neuron cell types, while DRD2 depletion precluded cocaine-induced synaptic plasticity. CONCLUSIONS: These findings provide a molecular mechanism for dopaminergic control of NAc ChINs that can control the susceptibility to cocaine-seeking behavior.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Colinérgicos , Dopamina , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...